JavaScript 46 – bugs e gestione degli errori – 4

Continuo da qui, copio qui.

Intercettazioni selettive
Ovviamente è una continuazione dal post precendente 😊

When an exception makes it all the way to the bottom of the stack without being caught, it gets handled by the environment. What this means differs between environments. In browsers, a description of the error typically gets written to the JavaScript console (reachable through the browser’s Tools or Developer menu).

For programmer mistakes or problems that the program cannot possibly handle, just letting the error go through is often okay. An unhandled exception is a reasonable way to signal a broken program, and the JavaScript console will, on modern browsers, provide you with some information about which function calls were on the stack when the problem occurred.

For problems that are expected to happen during routine use, crashing with an unhandled exception is not a very friendly response.

Invalid uses of the language, such as referencing a nonexistent variable, looking up a property on null, or calling something that’s not a function, will also result in exceptions being raised. Such exceptions can be caught just like your own exceptions.

When a catch body is entered, all we know is that something in our try body caused an exception. But we don’t know what, or which exception it caused.

JavaScript (in a rather glaring omission) doesn’t provide direct support for selectively catching exceptions: either you catch them all or you don’t catch any. This makes it very easy to assume that the exception you get is the one you were thinking about when you wrote the catch block.

But it might not be. Some other assumption might be violated, or you might have introduced a bug somewhere that is causing an exception. Here is an example, which attempts to keep on calling promptDirection until it gets a valid answer:

for (;;) {
  try {
    var dir = promtDirection("Where?"); // ← typo!
    console.log("You chose ", dir);
    break;
  } catch (e) {
    console.log("Not a valid direction. Try again.");
  }
}

The for (;;) construct is a way to intentionally create a loop that doesn’t terminate on its own. We break out of the loop only when a valid direction is given. But we misspelled promptDirection, which will result in an “undefined variable” error. Because the catch block completely ignores its exception value (e), assuming it knows what the problem is, it wrongly treats the variable error as indicating bad input. Not only does this cause an infinite loop, but it also “buries” the useful error message about the misspelled variable.

As a general rule, don’t blanket-catch exceptions unless it is for the purpose of “routing” them somewhere—for example, over the network to tell another system that our program crashed. And even then, think carefully about how you might be hiding information.

So we want to catch a specific kind of exception. We can do this by checking in the catch block whether the exception we got is the one we are interested in and by rethrowing it otherwise. But how do we recognize an exception?

Of course, we could match its message property against the error message we happen to expect. But that’s a shaky way to write code—we’d be using information that’s intended for human consumption (the message) to make a programmatic decision. As soon as someone changes (or translates) the message, the code will stop working.

Rather, let’s define a new type of error and use instanceof to identify it.

function InputError(message) {
  this.message = message;
  this.stack = (new Error()).stack;
}
InputError.prototype = Object.create(Error.prototype);
InputError.prototype.name = "InputError";

The prototype is made to derive from Error.prototype so that instanceof Error will also return true for InputError objects. It’s also given a name property since the standard error types (Error, SyntaxError, ReferenceError, and so on) also have such a property.

The assignment to the stack property tries to give this object a somewhat useful stack trace, on platforms that support it, by creating a regular error object and then using that object’s stack property as its own.

Now promptDirection can throw such an error.

function promptDirection(question) {
  var result = prompt(question, "");
  if (result.toLowerCase() == "left") return "L";
  if (result.toLowerCase() == "right") return "R";
  throw new InputError("Invalid direction: " + result);
}

And the loop can catch it more carefully.

for (;;) {
  try {
    var dir = promptDirection("Where?");
    console.log("You chose ", dir);
    break;
  } catch (e) {
    if (e instanceof InputError)
      console.log("Not a valid direction. Try again.");
    else
      throw e;
  }
}

This will catch only instances of InputError and let unrelated exceptions through. If you reintroduce the typo, the undefined variable error will be properly reported.

Asserzioni
Assertions are a tool to do basic sanity checking for programmer errors. Consider this helper function, assert:

function AssertionFailed(message) {
  this.message = message;
}
AssertionFailed.prototype = Object.create(Error.prototype);

function assert(test, message) {
  if (!test)
    throw new AssertionFailed(message);
}

function lastElement(array) {
  assert(array.length > 0, "empty array in lastElement");
  return array[array.length - 1];
}

This provides a compact way to enforce expectations, helpfully blowing up the program if the stated condition does not hold. For instance, the lastElement function, which fetches the last element from an array, would return undefined on empty arrays if the assertion was omitted. Fetching the last element from an empty array does not make much sense, so it is almost certainly a programmer error to do so.

Micidiale vero? non esattamente l’introduzzione a JavaScript che avevo in mente ma così è la vita 😡

:mrgreen:

Posta un commento o usa questo indirizzo per il trackback.

Trackback

Lascia un commento

Questo sito utilizza Akismet per ridurre lo spam. Scopri come vengono elaborati i dati derivati dai commenti.