SciPy – 1 – algebra lineare

Sono sempre fermo all’inizio perché chi ben comincia… 😉 e poi devo ancora decidere da dove devo copiare 😊, ci vorrebbe uno come Jake, lui spiega bene, rockz 🚀

Potrei partire da SciPy Reference Guide ma mi sembra un po’ troppo documentosa, forse è meglio il Scipy Tutorial: Vectors and Arrays (Linear Algebra) di Karlijn Willems.

Il tutorial di Karlijn mi sembra troppo corto, inoltre copre solo una parte di SciPy (a quanto vedo dall’indice della Reference) ma può essere un inizio. Anzi parto; poi si vedrà 😉 Intanto il solito mantra.

Continuo da qui, copio qui.

Much of what you need to know to really dive into machine learning is linear algebra, and that is exactly what this tutorial tackles. Today’s post goes over the linear algebra topics that you need to know and understand to improve your intuition for how and when machine learning methods work by looking at the level of vectors and matrices.

By the end of the tutorial, you’ll hopefully feel more confident to take a closer look at an algorithm!

Introduzione
Ho scorso con Jake tutto un notebook su NumPy, one of the core libraries for scientific computing in Python. This library contains a collection of tools and techniques that can be used to solve on a computer mathematical models of problems in Science and Engineering. Ma c’è SciPy, un package che ci consente prestazioni migliori, it’s a powerful data structure that allows you to efficiently compute arrays and matrices.

Now, SciPy is basically NumPy.

It’s also one of the core packages for scientific computing that provides mathematical algorithms and convenience functions, but it’s built on the NumPy extension of Python. This means that SciPy and NumPy are often used together.

Later on in this tutorial, it will become clear to you how the collaboration between these two libraries has become self-evident.

Interagire con NumPy e SciPy
To interact efficiently with both packages, you first need to know some of the basics of this library and its powerful data structure. To work with these arrays, there’s a huge amount of high-level mathematical functions operate on these matrices and arrays.

Vedremo adesso cosa serve per usare efficientemente SciPy. In essence, you have to know how about the array structure and how you can handle data types and how you can manipulate the shape of arrays. Ah! c’è un cheat sheet sia per NumPy che per SciPy.

Pausa 😊 in fondo ci stiamo ancora preparando alla partenza 😎

:mrgreen:

Posta un commento o usa questo indirizzo per il trackback.

Trackback

Rispondi

Inserisci i tuoi dati qui sotto o clicca su un'icona per effettuare l'accesso:

Logo di WordPress.com

Stai commentando usando il tuo account WordPress.com. Chiudi sessione /  Modifica )

Google photo

Stai commentando usando il tuo account Google. Chiudi sessione /  Modifica )

Foto Twitter

Stai commentando usando il tuo account Twitter. Chiudi sessione /  Modifica )

Foto di Facebook

Stai commentando usando il tuo account Facebook. Chiudi sessione /  Modifica )

Connessione a %s...

Questo sito utilizza Akismet per ridurre lo spam. Scopri come vengono elaborati i dati derivati dai commenti.

%d blogger hanno fatto clic su Mi Piace per questo: