Julia – 33 – tipi – 2

Continuo da qui, copio qui.

Tpi astratti
Abstract types cannot be instantiated, and serve only as nodes in the type graph, thereby describing sets of related concrete types: those concrete types which are their descendants. We begin with abstract types even though they have no instantiation because they are the backbone of the type system: they form the conceptual hierarchy which makes Julia’s type system more than just a collection of object implementation.

Recall that in Integers and Floating-Point Numbers [qui], we introduced a variety of concrete types of numeric values: Int8, UInt8, Int16, UInt16, Int32, UInt32, Int64, UInt64, Int128, UInt128, Float16, Float32, and Float64. Although they have different representation sizes, Int8, Int16, Int32, Int64 and Int128 all have in common that they are signed integer types. Likewise UInt8, UInt16, UInt32, UInt64 and UInt128 are all unsigned integer types, while Float16, Float32 and Float64 are distinct in being floating-point types rather than integers. It is common for a piece of code to make sense, for example, only if its arguments are some kind of integer, but not really depend on what particular kind of integer. For example, the greatest common denominator algorithm works for all kinds of integers, but will not work for floating-point numbers. Abstract types allow the construction of a hierarchy of types, providing a context into which concrete types can fit. This allows you, for example, to easily program to any type that is an integer, without restricting an algorithm to a specific type of integer.

Abstract types are declared using the abstract type keyword. The general syntaxes for declaring an abstract type are:

abstract type «name» end
abstract type «name» <: «supertype» end

The abstract type keyword introduces a new abstract type, whose name is given by «name». This name can be optionally followed by <: and an already-existing type, indicating that the newly declared abstract type is a subtype of this “parent” type.

When no supertype is given, the default supertype is Any – a predefined abstract type that all objects are instances of and all types are subtypes of. In type theory, Any is commonly called “top” because it is at the apex of the type graph. Julia also has a predefined abstract “bottom” type, at the nadir of the type graph, which is written as Union{}. It is the exact opposite of Any: no object is an instance of Union{} and all types are supertypes of Union{}.

Let’s consider some of the abstract types that make up Julia’s numerical hierarchy:

abstract type Number end
abstract type Real     <: Number end
abstract type AbstractFloat <: Real end
abstract type Integer  <: Real end
abstract type Signed   <: Integer end
abstract type Unsigned <: Integer end

The Number type is a direct child type of Any, and Real is its child. In turn, Real has two children (it has more, but only two are shown here; we’ll get to the others later): Integer and AbstractFloat, separating the world into representations of integers and representations of real numbers. Representations of real numbers include, of course, floating-point types, but also include other types, such as rationals. Hence, AbstractFloat is a proper subtype of Real, including only floating-point representations of real numbers. Integers are further subdivided into Signed and Unsigned varieties.

The <: operator in general means “is a subtype of”, and, used in declarations like this, declares the right-hand type to be an immediate supertype of the newly declared type. It can also be used in expressions as a subtype operator which returns true when its left operand is a subtype of its right operand:

An important use of abstract types is to provide default implementations for concrete types. To give a simple example, consider:

function myplus(x,y)
    x+y
end

The first thing to note is that the above argument declarations are equivalent to x::Any and y::Any. When this function is invoked, say as myplus(2,5), the dispatcher chooses the most specific method named myplus that matches the given arguments. (See Methods [prossimamente] for more information on multiple dispatch.)

Assuming no method more specific than the above is found, Julia next internally defines and compiles a method called myplus specifically for two Int arguments based on the generic function given above, i.e., it implicitly defines and compiles:

function myplus(x::Int,y::Int)
    x+y
end

and finally, it invokes this specific method.

Thus, abstract types allow programmers to write generic functions that can later be used as the default method by many combinations of concrete types. Thanks to multiple dispatch, the programmer has full control over whether the default or more specific method is used.

An important point to note is that there is no loss in performance if the programmer relies on a function whose arguments are abstract types, because it is recompiled for each tuple of argument concrete types with which it is invoked. (There may be a performance issue, however, in the case of function arguments that are containers of abstract types; see Performance Tips [prossimamente].)

:mrgreen:

Annunci
Post a comment or leave a trackback: Trackback URL.

Trackbacks

Rispondi

Inserisci i tuoi dati qui sotto o clicca su un'icona per effettuare l'accesso:

Logo WordPress.com

Stai commentando usando il tuo account WordPress.com. Chiudi sessione / Modifica )

Foto Twitter

Stai commentando usando il tuo account Twitter. Chiudi sessione / Modifica )

Foto di Facebook

Stai commentando usando il tuo account Facebook. Chiudi sessione / Modifica )

Google+ photo

Stai commentando usando il tuo account Google+. Chiudi sessione / Modifica )

Connessione a %s...

%d blogger hanno fatto clic su Mi Piace per questo: