SICP – cap. 2 – sets e recupero informazioni – 87

Continuo da qui, copio qui.

We have examined options for using lists to represent sets and have seen how the choice of representation for a data object can have a large impact on the performance of the programs that use the data. Another reason for concentrating on sets is that the techniques discussed here appear again and again in applications involving information retrieval.

Consider a data base containing a large number of individual records, such as the personnel files for a company or the transactions in an accounting system. A typical data-management system spends a large amount of time accessing or modifying the data in the records and therefore requires an efficient method for accessing records. This is done by identifying a part of each record to serve as an identifying key. A key can be anything that uniquely identifies the record. For a personnel file, it might be an employee’s ID number. For an accounting system, it might be a transaction number. Whatever the key is, when we define the record as a data structure we should include a key selector procedure that retrieves the key associated with a given record.

Now we represent the data base as a set of records. To locate the record with a given key we use a procedure lookup, which takes as arguments a key and a data base and which returns the record that has that key, or false if there is no such record. lookup is implemented in almost the same way as element-of-set? [post precdenti]. For example, if the set of records is implemented as an unordered list, we could use

(define (lookup given-key set-of-records)
  (cond ((null? set-of-records) false)
        ((equal? given-key 
                 (key (car set-of-records)))
         (car set-of-records))
        (else 
         (lookup given-key 
                 (cdr set-of-records)))))

Of course, there are better ways to represent large sets than as unordered lists. Information-retrieval systems in which records have to be “randomly accessed” are typically implemented by a tree-based method, such as the binary-tree representation discussed previously. In designing such a system the methodology of data abstraction can be a great help. The designer can create an initial implementation using a simple, straightforward representation such as unordered lists. This will be unsuitable for the eventual system, but it can be useful in providing a “quick and dirty” data base with which to test the rest of the system. Later on, the data representation can be modified to be more sophisticated. If the data base is accessed in terms of abstract selectors and constructors, this change in representation will not require any changes to the rest of the system.

🤢

Posta un commento o usa questo indirizzo per il trackback.

Trackback

Rispondi

Inserisci i tuoi dati qui sotto o clicca su un'icona per effettuare l'accesso:

Logo di WordPress.com

Stai commentando usando il tuo account WordPress.com. Chiudi sessione /  Modifica )

Google photo

Stai commentando usando il tuo account Google. Chiudi sessione /  Modifica )

Foto Twitter

Stai commentando usando il tuo account Twitter. Chiudi sessione /  Modifica )

Foto di Facebook

Stai commentando usando il tuo account Facebook. Chiudi sessione /  Modifica )

Connessione a %s...

Questo sito utilizza Akismet per ridurre lo spam. Scopri come vengono elaborati i dati derivati dai commenti.

%d blogger hanno fatto clic su Mi Piace per questo: