Continuando da qui copio qui.

Un post teorico, mi sa che per capirci qualcosa quando lo rivedrÃ² devo copiare tutto –o almeno parecchio ðŸ˜™

Effective data-driven science and computation requires understanding how data is stored and manipulated. This section outlines and contrasts how arrays of data are handled in the Python language itself, and how NumPy improves on this. Understanding this difference is fundamental to understanding much of the material throughout the rest of the book.

Users of Python are often drawn-in by its ease of use, one piece of which is dynamic typing. While a statically-typed language like C or Java requires each variable to be explicitly declared, a dynamically-typed language like Python skips this specification. For example, in C you might specify a particular operation as follows:

```
/* C code */
int result = 0;
for(int i=0; i<100; i++){
result += i;
}
```

While in Python the equivalent operation could be written this way:

```
# Python code
result = 0
for i in range(100):
result += i
```

Notice the main difference: in C, the data types of each variable are explicitly declared, while in Python the types are dynamically inferred. This means, for example, that we can assign any kind of data to any variable:

```
# Python code
x = 4
x = "four"
```

Here we’ve switched the contents of `x`

from an integer to a string. The same thing in C would lead (depending on compiler settings) to a compilation error or other unintented consequences:

```
/* C code */
int x = 4;
x = "four"; // FAILS
```

This sort of flexibility is one piece that makes Python and other dynamically-typed languages convenient and easy to use. Understanding how this works is an important piece of learning to analyze data efficiently and effectively with Python. But what this type-flexibility also points to is the fact that Python variables are more than just their value; they also contain extra information about the type of the value. We’ll explore this more in the sections that follow.

**L’integer di Python Ã¨ piÃ¹ di un integer**

The standard Python implementation is written in C. This means that every Python object is simply a cleverly-disguised C structure, which contains not only its value, but other information as well. For example, when we define an integer in Python, such as `x = 10000`

, `x`

is not just a “raw” integer. It’s actually a pointer to a compound C structure, which contains several values. Looking through the Python 3.4 source code, we find that the `integer (long)`

type definition effectively looks like this (once the C macros are expanded):

```
struct _longobject {
long ob_refcnt;
PyTypeObject *ob_type;
size_t ob_size;
long ob_digit[1];
};
```

A single `integer`

in Python 3.4 actually contains four pieces:

`ob_refcnt`

, a reference count that helps Python silently handle memory allocation and deallocation
`ob_type`

, which encodes the type of the variable
`ob_size`

, which specifies the size of the following data members
`ob_digit`

, which contains the actual integer value that we expect the Python variable to represent.

This means that there is some overhead in storing an integer in Python as compared to an integer in a compiled language like C, as illustrated in the following figure:

Here `PyObject_HEAD`

is the part of the structure containing the reference count, type code, and other pieces mentioned before.

Notice the difference here: a C integer is essentially a label for a position in memory whose bytes encode an integer value. A Python integer is a pointer to a position in memory containing all the Python object information, including the bytes that contain the integer value. This extra information in the Python integer structure is what allows Python to be coded so freely and dynamically. All this additional information in Python types comes at a cost, however, which becomes especially apparent in structures that combine many of these objects.

**La list di Python Ã¨ piÃ¹ di una list**

Let’s consider now what happens when we use a Python data structure that holds many Python objects. The standard mutable multi-element container in Python is the list. We can create a list of integers as follows:

Because of Python’s dynamic typing, we can even create heterogeneous lists:

But this flexibility comes at a cost: to allow these flexible types, each item in the list must contain its own type info, reference count, and other information â€“that is, each item is a complete Python object. In the special case that all variables are of the same type, much of this information is redundant: it can be much more efficient to store data in a fixed-type array. The difference between a dynamic-type list and a fixed-type (NumPy-style) array is illustrated in the following figure:

At the implementation level, the array essentially contains a single pointer to one contiguous block of data. The Python list, on the other hand, contains a pointer to a block of pointers, each of which in turn points to a full Python object like the Python integer we saw earlier. Again, the advantage of the list is flexibility: because each list element is a full structure containing both data and type information, the list can be filled with data of any desired type. Fixed-type NumPy-style arrays lack this flexibility, but are much more efficient for storing and manipulating data.

**Fixed-type arrays in Python**

Python offers several different options for storing data in efficient, fixed-type data buffers. The built-in array module (available since Python 3.3) can be used to create dense arrays of a uniform type:

Here `'i'`

is a type code indicating the contents are integers.

Much more useful, however, is the ndarray object of the NumPy package. While Python’s array object provides efficient storage of array-based data, NumPy adds to this efficient operations on that data. We will explore these operations in later sections; here we’ll demonstrate several ways of creating a NumPy array.

We’ll start with the standard NumPy `import`

, under the alias `np`

:

**Creare arrays da liste Python**

First, we can use `np.array`

to create arrays from Python lists:

Remember that unlike Python lists, NumPy is constrained to arrays that all contain the same type. If types do not match, NumPy will upcast if possible (here, integers are up-cast to floating point):

If we want to explicitly set the data type of the resulting array, we can use the `dtype`

keyword:

Finally, unlike Python lists, NumPy arrays can explicitly be multi-dimensional; here’s one way of initializing a multidimensional array using a list of lists:

The inner lists are treated as rows of the resulting two-dimensional array.

**Creare nuovi arrays**

Especially for larger arrays, it is more efficient to create arrays from scratch using routines built into NumPy. Here are several examples:

e –mica finito ðŸ˜‰

e ancora

e infine

**Tipi standard di NumPy**

NumPy arrays contain values of a single type, so it is important to have detailed knowledge of those types and their limitations. Because NumPy is built in C, the types will be familiar to users of C, Fortran, and other related languages.

The standard NumPy data types are listed in the following table. Note that when constructing an array, they can be specified using a string:

`np.zeros(10, dtype='int16')`

Or using the associated NumPy object:

`np.zeros(10, dtype=np.int16)`

```
Data type Description
bool_ Boolean (True or False) stored as a byte
int_ Default integer type (same as C long; normally either int64 or int32)
intc Identical to C int (normally int32 or int64)
intp Integer used for indexing (same as C ssize_t; normally either int32 or int64)
int8 Byte (-128 to 127)
int16 Integer (-32768 to 32767)
int32 Integer (-2147483648 to 2147483647)
int64 Integer (-9223372036854775808 to 9223372036854775807)
uint8 Unsigned integer (0 to 255)
uint16 Unsigned integer (0 to 65535)
uint32 Unsigned integer (0 to 4294967295)
uint64 Unsigned integer (0 to 18446744073709551615)
float_ Shorthand for float64.
float16 Half precision float: sign bit, 5 bits exponent, 10 bits mantissa
float32 Single precision float: sign bit, 8 bits exponent, 23 bits mantissa
float64 Double precision float: sign bit, 11 bits exponent, 52 bits mantissa
complex_ Shorthand for complex128.
complex64 Complex number, represented by two 32-bit floats
complex128 Complex number, represented by two 64-bit floats
```

More advanced type specification is possible, such as specifying big or little endian numbers; for more information, refer to the NumPy documentation. NumPy also supports compound data types, which will be covered [prossimamente].